Circulant Preconditioners for Toeplitz Matrices with Positive continuous Generating Functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circulant Preconditioners for Toeplitz Matrices with Piecewise Continuous Generating Functions Man-chung Yeung and Raymond

We consider the solution of «-by-« Toeplitz systems T„x = b by preconditioned conjugate gradient methods. The preconditioner Cn is the T. Chan circulant preconditioner, which is defined to be the circulant matrix that minimizes \\B„ T„\\f over all circulant matrices B„ . For Toeplitz matrices generated by positive In -periodic continuous functions, we have shown earlier that the spectrum of the...

متن کامل

Circulant/Skewcirculant Matrices as Preconditioners for Hermitian Toeplitz Systems

We study the solutions of Hermitian positive definite Toeplitz systems Tnx = b by the preconditioned conjugate gradient method. For preconditioner An the convergence rate is known to be governed by the distribution of the eigenvalues of the preconditioned matrix A−1 n Tn . New properties of the circulant preconditioners introduced by Strang, R. Chan, T. Chan, Szegö/Grenander and Tyrtyshnikov ar...

متن کامل

Circulant Preconditioners for Ill-Conditioned Hermitian Toeplitz Matrices

In this paper, we propose a new family of circulant preconditioners for solving ill-conditioned Hermitian Toeplitz systems Ax = b. The eigenval-ues of the preconditioners are given by the convolution products of the generating function f of A with some summation kernels. When f is a nonnegative 2-periodic continuous function deened on ?; ] with a zero of order 2p, we show that the circulant pre...

متن کامل

Circulant Preconditioners for Hermitian Toeplitz Systems

We study the solutions of Hermitian positive deenite Toeplitz systems Ax = b by the preconditioned conjugate gradient method for three families of circulant preconditioners C. The convergence rates of these iterative methods depend on the spectrum of C ?1 A. For a Toeplitz matrix A with entries which are Fourier coeecients of a positive function f in the Wiener class, we establish the invertibl...

متن کامل

Approximate inverse-free preconditioners for Toeplitz matrices

In this paper, we propose approximate inverse-free preconditioners for solving Toeplitz systems. The preconditioners are constructed based on the famous Gohberg-Sememcul formula. We show that if a Toepltiz matrix is generated by a positive bounded function and its entries enjoys the off-diagonal decay property, then the eigenvalues of the preconditioned matrix are clustered around one. Experime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1992

ISSN: 0025-5718

DOI: 10.2307/2153030